Alchembed: A Computational Method for Incorporating Multiple Proteins into Complex Lipid Geometries

نویسندگان

  • Elizabeth Jefferys
  • Zara A. Sands
  • Jiye Shi
  • Mark S. P. Sansom
  • Philip W. Fowler
چکیده

A necessary step prior to starting any membrane protein computer simulation is the creation of a well-packed configuration of protein(s) and lipids. Here, we demonstrate a method, alchembed, that can simultaneously and rapidly embed multiple proteins into arrangements of lipids described using either atomistic or coarse-grained force fields. During a short simulation, the interactions between the protein(s) and lipids are gradually switched on using a soft-core van der Waals potential. We validate the method on a range of membrane proteins and determine the optimal soft-core parameters required to insert membrane proteins. Since all of the major biomolecular codes include soft-core van der Waals potentials, no additional code is required to apply this method. A tutorial is included in the Supporting Information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems

In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...

متن کامل

Application of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries

In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...

متن کامل

Incompressible laminar flow computations by an upwind least-squares meshless method

In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...

متن کامل

Random Vortex Method for Geometries with Unsolvable Schwarz-Christoffel Formula

In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method (in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to map the physical geometry into the upper half plane. In some complex geometries like the flow in...

متن کامل

Computational insights into fluconazole resistance by the suspected mutations in lanosterol 14α-demethylase (Erg11p) of Candida albicans

Mutations in the ergosterol biosynthesis gene 11 (ERG11) of Candida albicans have been frequently reported in fluconazole-resistant clinical isolates. Exploring the mutations and their effect could provide new insights into the underlying mechanism of fluconazole resistance.  Erg11p_Threonine285Alanine (Erg11p_THR285ALA), Erg11p_Leucine321Phenylalanine (Erg11p_LEU321PHE) and Erg11p_Serine457Pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015